SAN DIEGO STATE UNIVERSITY

SDSU Center for Clinical and Cognitive Neuroscience

INTRODUCTION

- Adult vocabulary is typically acquired by using surrounding linguistic information to determine the meaning of a word - word learning from context¹
- Success in learning is influenced by whether the surrounding linguistic context provides support for the word's meaning
- The majority of EEG research focusing on word learning from context only takes into account the word being learned, not the surrounding linguistic information²
- Frequency bands associated with linguistic and cognitive processes are potentially related with word learning from context

PURPOSE

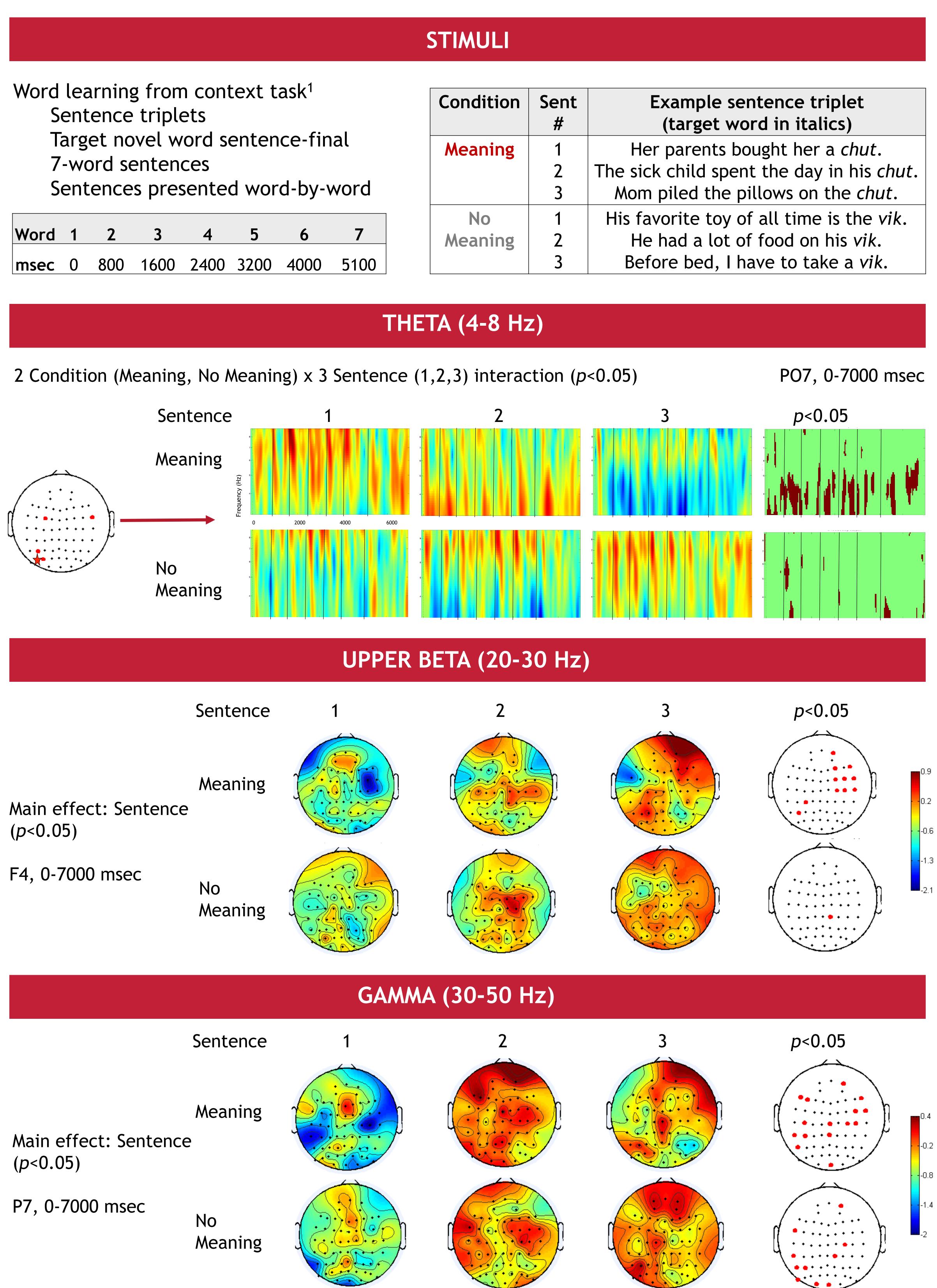
Examine the neural and cognitive processes as one reads sentences that support word learning from context

METHODS

Participants

• 14 adults, college students

Equipment


• Neuroscan 62-electrode cap EEG system

EEG Analysis

- Epoched (-500-7000 msec) data Fourier transformed, magnitude squared, and normalized
- Power spectrum data averaged across trials and subjects and computed using the log power values minus the baseline
- Mean baseline power at each electrode and frequency subtracted ³
- Study design:
- 2 Condition (Meaning, No meaning) x 3 Sentence (1,2,3) ANOVA
- Statistical significance (p < 0.05) determined using random permutation statistical analysis
- Statistically significant clusters of 3 or more electrodes were included in the results

Surrounding linguistic context influences the role of neural oscillations underlying word learning

Adam Zeller¹, Alyson D. Abel¹, Julie M. Schneider², Brittany J. Sharp¹, Mandy J. Maguire² / ¹San Diego State University, ²The University of Texas at Dallas

ndition	Sent #	Example sentence triplet (target word in italics)
eaning	1	Her parents bought her a chut.
	2	The sick child spent the day in his chut.
	3	Mom piled the pillows on the chut.
No	1	His favorite toy of all time is the vik.
eaning	2	He had a lot of food on his vik.
	3	Before bed, I have to take a vik.

FINDINGS

No significant findings in alpha and lower beta Theta

Findings: Increase with presentation of each word; interaction driven by greater increase during 3rd sentence for No Meaning vs. Meaning Interpretation: Greater lexical/semantic processing in trying to assign meaning to the novel word⁴

Upper Beta

Findings: Main effect of sentence in Meaning, driven by increase during 3rd sentence **Interpretation:** Suggests increased memory demands during verification of the novel word's meaning

Gamma

Findings: Increase during 2nd sentence,

consistent across conditions

Interpretation: Active maintenance of sentence stimuli in memory while trying to identify the meaning of the novel word^{5,6}

CONCLUSIONS

Early stages of learning (1st and 2nd sentences) • Presence/absence of contextual support

- doesn't influence how they approach the task
- Draw similarly on lexical/semantic processing (theta) and maintenance (gamma)

Final stages of learning (3rd sentence)

- Effect of contextual support
- Engage memory (upper beta) more in supportive contexts
- Engage lexical/semantic processing (theta) more in non-supportive contexts

REFERENCES

- Mestres-Misse, A., Rodriguez-Fornells, A., & Münte, T. (2007). Watching the brain during meaning acquisition. Cerebral Cortex, 17, 1858-1866
- Perfetti, C.C, Wlotko, E.E., & Hart, L.A. (2005). Word learning and individual differences in word learning reflected in event-related potentials. Journal of Experimental Psychology: Learning, Memory, and
- Cognition, 31(6), 1271 Ferree, T. C., Brier, M. R., Hart, J., & Kraut, M. A. (2009). Space-time-frequency analysis of EEG data using within-subject statistical tests followed by sequential PCA. NeuroImage, 45, 109-121.
- Bastiaansen, M., Linden, M., Keurs, M., Dijkstra, T., & Hagoort, P. (2005). Theta responses are involved in lexical-semantic retrieval during language processing. Journal of Cognitive Neuroscience, 17, 530-541. Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with
- attention and memory. Trends in Neurosciences, 30, 317-324. Hanslmayr, S., Spitzer, B., & Bäuml, K.-H. (2009). Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cerebral Cortex, 19, 1631-1640.

ACKNOWLEDGEMENTS

This presentation was funded in part through a travel award from the SDSU Center for Clinical and Cognitive Neuroscience.

This project was supported in part by SDSU internal funding to A.A.